Lecture 15: Pseudo-random Generators

Objective

- Today we shall introduce the concept of pseudorandom generators
- We shall construct one-bit extension pseudorandom generators from one-way permutations using Goldreich-Levin Hardcore predicate
- We shall construct arbitrary stretch pseudorandom generators from one-bit extension pseudorandom generators

Definition (PRG)

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+\ell}$ be a function that is efficient to evaluate. We say that G is a pseudorandom generator, if
(1) The stretch $\ell>0$, and
(2) The distribution $G\left(\mathbb{U}_{\{0,1\}^{n}}\right)$ "appears indistinguishable" from the distribution $\mathbb{U}_{\{0,1\}^{n+\ell}}$ for computationally bounded adversaries.

Clarifications.

(1) The input bits $s \sim \mathbb{U}_{\{0,1\}^{n}}$ that is fed to the PRG is referred to as the seed of the PRG
(2) Intuition of a PRG: We rely on a small amount of pure randomness to jumpstart a PRG that yields more (appears to be) random bits
(3) Note that if $\ell \leqslant 0$ then PRG is easy to construct. Note that in this case $n+\ell \leqslant n$. So, $G(s)$ just outputs the first $n+\ell$ bits of the input seed s.
(9) The entire non-triviality is to construct G when $\ell \geqslant 1$. Suppose $\ell=1$. Note that in the case G has 2^{n} different possible inputs. So, G has at most 2^{n} different possible outputs. The range $\{0,1\}^{n+\ell}$ has size 2^{n+1}. So, there are at least $2^{n+1}-2^{n}=2^{n}$ elements in the range that have no pre-image under the mapping G. We can conclude that $G\left(\mathbb{U}_{\{0,1\}^{n}}\right)$ assigns 0 probability to at least 2^{n} entries in the range.
(5) Note that the distribution $G\left(\mathbb{U}_{\{0,1\}^{n}}\right)$ is different from the distribution $\mathbb{U}_{\{0,1\}^{n+1}}$. A computationally unbounded adversary can distinguish $G\left(\mathbb{U}_{\{0,1\}^{n}}\right)$ from $\mathbb{U}_{\{0,1\}^{n+1}}$. However, for a computationally bounded adversary, the distribution $G\left(\mathbb{U}_{\{0,1\}^{n}}\right)$ appears same as the distribution $\mathbb{U}_{\{0,1\}^{n+1}}$
(0 In this class, we shall see a construction of PRG when $\ell=1$ given a OWP f. In general, we know how to construct a PRG using a OWF. However, presenting that construction is beyond the scope of this course.
(1) Note that these PRG constructions work for ny OWF f. So, if some OWF f is broken in the future due to progress in mathematics or use of quantum computers, then we can simply replace the existing PRG constructions to use a different OWF g.

Observation on Bijections

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a bijection
- Suppose we sample $x \leftarrow_{\leftarrow}^{\leftarrow}\{0,1\}^{n}$
- For any $y \in\{0,1\}^{n}$, what is the probability that $f(x)=y$?
- Note that there is a unique x^{\prime} such that $f\left(x^{\prime}\right)=y$, because f is a bijection
- $f(x)=y$ if and only if $x=x^{\prime}$, i.e. the probability that $f(x)=y$ is $1 / 2^{n}$.
- So, the distribution of $f(x)$, where $x \leftarrow_{\leftarrow}^{\leftarrow}\{0,1\}^{n}$, is a uniform distribution over $\{0,1\}^{n}$

Goldreich-Levin Hardcore Predicate I

- We define the inner product of $r \in\{0,1\}^{n}$ and $x \in\{0,1\}^{n}$ as $\langle r, x\rangle=r_{1} x_{1} \oplus r_{2} x_{2} \oplus \cdots \oplus r_{n} x_{n}$
- We will state the Goldreich-Levin Hardcore Predicate without proof

Theorem (Goldrecih-Levin Hardcore Predicate)

If $f\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a one-way function then the bit $b=\langle r, x\rangle$ cannot be predicted given ($r, f(x)$).

This proof is beyond the scope of this course. However, students are encouraged to study this celebrated result in the future.

Goldreich-Levin Hardcore Predicate II

A note on "Predicting a bit"

- Note that it is trivial to correctly predict any bit with probability $1 / 2$. (Guess a uniformly random bit z. The probability that z is identical to the hidden bit is $1 / 2$)
- To non-trivially predict a hidden bit, the adversary has to correctly predict it with probability at least $1 / 2+\varepsilon$, where $\varepsilon=1 / \operatorname{poly}(n)$

One-bit Extension PRG I

- Recall: A pseudorandom generator (PRG) is a function $G_{n, n+\ell}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+\ell}$ such that, for $x \leftarrow^{\S}\{0,1\}^{n}$, the output $G_{n, n+\ell}(x)$ looks like a random $(n+\ell)$-bit string.
- A one-bit extension PRG has $\ell=1$
- Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a OWP (i.e., f is a OWF and it is a bijection)
- Note that the mapping $(r, x) \mapsto(r, f(x))$ is a bijection
- So, the output $(r, f(x))$ is a uniform distribution if $(r, x) \stackrel{\$}{\leftarrow}\{0,1\}^{2 n}$
- Now, the output $(r, f(x),\langle r, x\rangle)$ looks like a random $(2 n+1)$-bit string if f is a OWP (because of Goldreich-Levin Hardcore Predicate result)

One-bit Extension PRG II

- Consider the function $G_{2 n, 2 n+1}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n+1}$ defined as follows

$$
G_{2 n, 2 n+1}(r, x)=(r, f(x),\langle r, x\rangle)
$$

- This is a one-bit extension PRG if f is a OWP
- This construction will be pictorially represented as follows

Generating Long Pseudorandom Bit-Strings I

- In the previous step, we saw how to construct a one-bit extension PRG G
- Now, we use the previous step iteratively to construct arbitrarily long pseudorandom bit-strings
- The next slide, using the one-bit extension PRG, provides the intuition to construct $G_{2 n, \ell}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n+\ell}$, for arbitrary $\ell=\operatorname{poly}(n)$.
- The example shows only $\ell=5$ but can be extended naturally to arbitrary $\ell=\operatorname{poly}(n)$

Generating Long Pseudorandom Bit-Strings II

Length Doubling PRG

- This is a PRG that takes n-bit seed and outputs $2 n$-bit string
- $G_{n, 2 n}$ is a length-doubling PRG if $G_{n, 2 n}:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ and $G_{n, 2 n}$ is a PRG
- We can use the iterated construction in the previous slide to construct a length-doubling PRG from one-bit extension PRG
- Design secret-key encryption schemes where the message is much longer than the secret key

